Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Fumaric acid–*trans*-cinnamamide (1/2)

Hosomi, Ohba and Ito

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

 $D_x = 1.328 \text{ Mg m}^{-3}$

 $h = 0 \rightarrow 15$

 $k = -7 \rightarrow 0$

 $l = -22 \rightarrow 22$

3 standard reflections

every 150 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0438P)^2]$

Extinction correction: SHELXL97

Extinction coefficient: 0.016 (2)

+ 0.2732P] where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ \AA}^{-3}$

(Sheldrick, 1997)

Acta Crystallographica Section C **Crystal Structure** Communications

ISSN 0108-2701

Fumaric acid-trans-cinnamamide (1/2)

Hiroyuki Hosomi,^a Shigeru Ohba^{a*} and Yoshikatsu Ito^b

^aDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ^bDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan Correspondence e-mail: ohba@chem.keio.ac.jp

Received 8 September 2000 Accepted 19 September 2000

Data validation number: IUC0000261

In the title adduct, C₄H₄O₄·2C₉H₉NO, fumaric acid has a centre of symmetry and is connected to two trans-cinnamamide molecules through cyclic hydrogen bonds. A singlecrystal photoirradiation promoted the conformational disorder of the fumaric acid.

Comment

The structure of the title adduct, (I), was determined previously based on the X-ray intensity data measured on a Rigaku AFC-5S diffractometer (Ito et al., 2000). The structure has been redetermined in the present study in order to compare it directly with that after photoirradiation, measuring the X-ray data on a Rigaku AFC-7R diffractometer.

Conformational disorder of the fumaric acid was detected, which was not taken into account in the previous study (Ito et al., 2000). The population is 7.9 (3)% of the minor conformation, which is suitable for heterogeneous photocycloaddition with a neighbouring cinnamamide molecule. The distance between the centres of the $C6^{*}$ (symmetry code: (i) 1 - x, 1 - y, 1 - z] and C8=C9 bonds is 3.950 (3) Å. In the crystal which had undergone photoirradiation for 3 h, (I'), the population of the minor conformation increased to 14.8 (6)%.

Experimental

Crystals of (I) were grown by slow evaporation from a 2-propanol solution of a 1:2 mixture of fumaric acid and cinnamamide.

Compound (I)

Crystal data
C ₄ H ₄ O ₄ ·2C ₉ H ₉ NO
M = 410.43

$M_r = 410.43$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 11.505 (2)Å	reflections
b = 5.298(1) Å	$\theta = 13.3 - 14.9^{\circ}$
c = 16.886 (2) Å	$\mu = 0.097 \text{ mm}^{-1}$
$\beta = 94.057 \ (9)^{\circ}$	T = 298 (1) K
$V = 1026.6 (3) \text{ Å}^3$	Prism, colourless
Z = 2	$0.70 \times 0.60 \times 0.25 \ \mathrm{mm}$

Data collection

Rigaku AFC-7R diffractometer θ -2 θ scans 2462 measured reflections 2351 independent reflections 1873 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.007$ $\theta_{\rm max}=27.5^\circ$

Refinement

Refinement on F^2 R(F) = 0.038 $wR(F^2) = 0.107$ S = 1.062351 reflections 194 parameters H atoms: see text

Table 1

Selected geometric parameters (Å) for (I).

O1-C7	1.237 (2)	$C6-C6^{i}$	1.314 (3)
O2-C5	1.203 (3)	$C6^{*}-C6^{*i}$	1.29 (4)
O3-C5	1.312 (2)	C7-C8	1.479 (2)
N4-C7	1.322 (2)	C8-C9	1.321 (2)
C5-C6	1.489 (2)		

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O1 ⁱ	0.93 (2)	1.65 (2)	2.555 (2)	163 (2)
$N4-H4A\cdots O2^{ii}$	0.88(2)	2.44 (2)	3.288 (2)	161 (2)
N4-H4A···O2* ⁱⁱ	0.88(2)	2.21 (3)	3.08 (2)	171 (2)
N4–H4 B ···O1 ⁱⁱⁱ	0.89 (2)	2.26 (2)	3.105 (2)	160 (2)

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (iii) x, 1 + y, z.

Compound (I')

Crystal data	
$C_4H_4O_4 \cdot 2C_9H_9NO$	$D_x = 1.315 \text{ Mg m}^{-3}$
$M_r = 410.43$	Mo K α radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 11.547 (2) Å	reflections
b = 5.354 (2) Å	$\theta = 13.5 - 15.0^{\circ}$
c = 16.820(2) Å	$\mu = 0.096 \text{ mm}^{-1}$
$\beta = 94.60 \ (1)^{\circ}$	T = 298 (1) K
$V = 1036.5 (4) \text{ Å}^3$	Prism, colourless
Z = 2	$0.8 \times 0.5 \times 0.15 \text{ mm}$

electronic papers

Data collection

Rigaku AFC-7R diffractometer	$h = 0 \rightarrow 15$
$\theta - 2\theta$ scans	$k = 0 \rightarrow 7$
2482 measured reflections	$l = -22 \rightarrow 22$
2367 independent reflections	3 standard reflections
1405 reflections with $I > 2\sigma(I)$	every 150 reflection
$R_{\rm int} = 0.021$	intensity decay: nor
$\theta_{\rm max} = 27.5^{\circ}$	

Refinement

Refinement on F^2 R(F) = 0.071 $wR(F^2) = 0.175$ S = 1.172367 reflections 181 parameters

ıs ıе

H atoms: see text
$w = 1/[\sigma^2(F_o^2) + (0.03P)^2 + 1.00P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm A}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 3

Selected geometric parameters (Å) for (I').

O1-C7	1.234 (4)	C6-C6 ⁱ	1.322 (8)
O2-C5	1.215 (5)	C6*-C6* ⁱ	1.30
O3-C5	1.303 (5)	C7-C8	1.478 (4)
N4-C7	1.321 (5)	C8-C9	1.321 (5)
C5-C6	1.469 (5)		

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 4					
Hydrogen-bonding geometry	(Å,	°)	for	(\mathbf{I}')).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
03-H3···O1 ⁱ	0.99 (4)	1.56 (3)	2.542 (4)	171 (4)
$N4-H4A\cdots O2^{ii}$	0.81(4)	2.50 (4)	3.282 (5)	163 (4)
N4-H4A···O2* ⁱⁱ	0.81(4)	2.26	3.07	173
N4-H4 B ···O1 ⁱⁱⁱ	0.88 (4)	2.33 (4)	3.154 (5)	155 (3)

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (iii) x, 1 + y, z.

For (I), the non-H atoms of the major conformation of fumaric acid (O2, O3, C5 and C6) and cinnamamide were refined anisotropically. Those of the minor conformation of fumaric acid (O2*, O3*, C5* and C6*) were refined isotropically, and their $U_{\rm iso}$ parameters were fixed to U_{eq} of the corresponding atom of the major conformation. The bond lengths in the minor conformation were restrained with those of the major one. The H atoms of the minor conformation were omitted. All other H atoms were located from difference syntheses and refined isotropically. The bond distances involving the H atoms are in the range 0.88 (2)-0.97 (2) Å. The R factor decreased from 0.047 to 0.038 by introducing a 7.9 (3)% occupancy of the minor conformation. The UV spectra of a 2propanol solution of (I) show a π - π * absorption at 271 nm, and almost no absorption longer than 320 nm. Through a long-pass filter UV34 (T = 10% at 330 nm), a single-crystal of (I) was photoirradiated with a 250-W ultra high pressure Hg lamp for 3 h. The positional parameters of the non-H atoms of the minor conformation of fumaric acid were fixed to those of (I), and their $U_{\rm iso}$ parameters were fixed to $U_{\rm eq}$ of the corresponding atom of the major conformation. The H atoms of the minor conformation were omitted. The population of the minor conformation was refined to be 14.8 (6)%. The bond distances involving the H atoms are in the range 0.75 (3)-0.99 (4) Å.

For (I) and (I'), data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Ito, Y., Hosomi, H. & Ohba, S. (2000). Tetrahedron. In the press.

Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Molecular Structure Corporation (1999). TEXSAN. Version 1.10b. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Hosomi, Ohba and Ito • C₄H₄O₄·2C₉H₉NO

e508