Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Fumaric acid-trans-cinnamamide (1/2)

Hosomi, Ohba and Ito

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

[^0]Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Fumaric acid-trans-cinnamamide (1/2)

Hiroyuki Hosomi, ${ }^{\text {a }}$ Shigeru Ohba ${ }^{\text {a* }}$ and Yoshikatsu Ito ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{\mathbf{b}}$ Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
Kyoto University, Kyoto 606-8501, Japan
Correspondence e-mail: ohba@chem.keio.ac.jp

Received 8 September 2000
Accepted 19 September 2000

Data validation number: IUC0000261
In the title adduct, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$, fumaric acid has a centre of symmetry and is connected to two trans-cinnamamide molecules through cyclic hydrogen bonds. A singlecrystal photoirradiation promoted the conformational disorder of the fumaric acid.

Comment

The structure of the title adduct, (I), was determined previously based on the X-ray intensity data measured on a Rigaku AFC-5S diffractometer (Ito et al., 2000). The structure has been redetermined in the present study in order to compare it directly with that after photoirradiation, measuring the X-ray data on a Rigaku AFC-7R diffractometer.

(I)

Conformational disorder of the fumaric acid was detected, which was not taken into account in the previous study (Ito et al., 2000). The population is $7.9(3) \%$ of the minor conformation, which is suitable for heterogeneous photocycloaddition with a neighbouring cinnamamide molecule. The distance between the centres of the $\mathrm{C} 6 *=\mathrm{C} 6^{* i}{ }^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y, 1-z$] and $\mathrm{C} 8=\mathrm{C} 9$ bonds is 3.950 (3) \AA. In the crystal which had undergone photoirradiation for 3 h , $\left(I^{\prime}\right)$, the population of the minor conformation increased to 14.8 (6) \%.

Experimental

Crystals of (I) were grown by slow evaporation from a 2-propanol solution of a 1:2 mixture of fumaric acid and cinnamamide.

Compound (I)

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$
$D_{x}=1.328 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=410.43$
Monoclinic, $P 2_{1} / n$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$a=11.505$ (2) A
$b=5.298$ (1) \AA
$\theta=13.3-14.9^{\circ}$
$c=16.886(2) \AA$
$\beta=94.057$ (9$)^{\circ}$
$\mu=0.097 \mathrm{~mm}^{-1}$
$V=1026.6$ (3) \AA^{3}
$T=298$ (1) K
$Z=2$
Prism, colourless
$0.70 \times 0.60 \times 0.25 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer

$$
\begin{aligned}
& h=0 \rightarrow 15 \\
& k=-7 \rightarrow 0 \\
& l=-22 \rightarrow 22 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0438 P)^{2}\right.$
$R(F)=0.038$
$w R\left(F^{2}\right)=0.107$
$S=1.06$
2351 reflections
194 parameters
H atoms: see text
$+0.2732 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.016 (2)

Table 1
Selected geometric parameters (A) for (I).

$\mathrm{O} 1-\mathrm{C} 7$	$1.237(2)$	$\mathrm{C} 6-\mathrm{C} 6^{\mathrm{i}}$	$1.314(3)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.203(3)$	$\mathrm{C}^{*}-\mathrm{C} 6^{\mathrm{i}}$	$1.29(4)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.312(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.479(2)$
$\mathrm{N} 4-\mathrm{C} 7$	$1.322(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.321(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.489(2)$		

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\AA \AA^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.93(2)$	$1.65(2)$	$2.555(2)$	$163(2)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.88(2)$	$2.44(2)$	$3.288(2)$	$161(2)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{* i}$	$0.88(2)$	$2.21(3)$	$3.08(2)$	$171(2)$
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\text {iii }}$	$0.89(2)$	$2.26(2)$	$3.105(2)$	$160(2)$
Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (iii) $x, 1+y, z$				

Compound (I^{\prime})

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$
$D_{x}=1.315 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=410.43$
Monoclinic, $P 2_{2} / n$
Mo $\mathrm{K} \alpha$ radiation
$a=11.547$ (2) A
Cell parameters from 25 reflections
$b=5.354$ (2) \AA
$\theta=13.5-15.0^{\circ}$
$c=16.820$ (2) A
$\mu=0.096 \mathrm{~mm}^{-1}$
$\beta=94.60(1)^{\circ}$
$T=298$ (1) K
$V=1036.5$ (4) \AA^{3}
Prism, colourless
$Z=2$
$0.8 \times 0.5 \times 0.15 \mathrm{~mm}$

Data collection

Rigaku AFC- $7 R$ diffractometer
$\theta-2 \theta$ scans
2482 measured reflections
2367 independent reflections
1405 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& h=0 \rightarrow 15 \\
& k=0 \rightarrow 7 \\
& l=-22 \rightarrow 22 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.071$
$w R\left(F^{2}\right)=0.175$
$S=1.17$
2367 reflections
181 parameters

$$
\begin{aligned}
& \mathrm{H} \text { atoms: see text } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.03 P)^{2}+1.00 P\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Table 3
Selected geometric parameters (\AA) for (I^{\prime}).

$\mathrm{O} 1-\mathrm{C} 7$	$1.234(4)$	$\mathrm{C} 6-\mathrm{C} 6^{\mathrm{i}}$	$1.322(8)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.215(5)$	$\mathrm{C}^{*}-\mathrm{C} 6^{* i}$	1.30
$\mathrm{O} 3-\mathrm{C} 5$	$1.303(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.478(4)$
$\mathrm{N} 4-\mathrm{C} 7$	$1.321(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.321(5)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.469(5)$		

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 4
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for ($\left.I^{\prime}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}_{1}{ }^{\mathrm{i}}$	$0.99(4)$	$1.56(3)$	$2.542(4)$	$171(4)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.81(4)$	$2.50(4)$	$3.282(5)$	$163(4)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{*}{ }^{* i}$	$0.81(4)$	2.26	3.07	173
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{i i}$	$0.88(4)$	$2.33(4)$	$3.154(5)$	$155(3)$
Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (iii) $x, 1+y, z$.				

For (I), the non-H atoms of the major conformation of fumaric acid (O2, O3, C5 and C6) and cinnamamide were refined anisotropically. Those of the minor conformation of fumaric acid ($\mathrm{O} 2^{*}$,

O3*, $\mathrm{C} 5^{*}$ and $\mathrm{C} 6^{*}$) were refined isotropically, and their $U_{\text {iso }}$ parameters were fixed to $U_{\text {eq }}$ of the corresponding atom of the major conformation. The bond lengths in the minor conformation were restrained with those of the major one. The H atoms of the minor conformation were omitted. All other H atoms were located from difference syntheses and refined isotropically. The bond distances involving the H atoms are in the range 0.88 (2)-0.97 (2) \AA. The R factor decreased from 0.047 to 0.038 by introducing a $7.9(3) \%$ occupancy of the minor conformation. The UV spectra of a 2propanol solution of (I) show a $\pi-\pi^{*}$ absorption at 271 nm , and almost no absorption longer than 320 nm . Through a long-pass filter UV34 ($T=10 \%$ at 330 nm), a single-crystal of (I) was photoirradiated with a $250-\mathrm{W}$ ultra high pressure Hg lamp for 3 h . The positional parameters of the non-H atoms of the minor conformation of fumaric acid were fixed to those of (I), and their $U_{\text {iso }}$ parameters were fixed to $U_{\text {eq }}$ of the corresponding atom of the major conformation. The H atoms of the minor conformation were omitted. The population of the minor conformation was refined to be $14.8(6) \%$. The bond distances involving the H atoms are in the range 0.75 (3)-0.99 (4) \AA.

For (I) and (I'), data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Ito, Y., Hosomi, H. \& Ohba, S. (2000). Tetrahedron. In the press.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10b. MSC, 9009
New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

